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A DYNAMICAL MODEL FOR MAGNETIC SIGNAL INTERPRETATION
IN RELATIVISTIC ELECTRON BEAM HEATED PLASMAS

In recent years, many experimental effort‘.sl'11 have been
made to achieve rapid plasma heating by the use of intense relativistic
electron beams. Typically, a beam of 50-200 nsec duration is injected
into a plasma or neutral gas column magnetized by a uniform magnetic
field Bo. In such experiments, the most commonly used diagnostic tool
to measure the plasma energy is either a magnetic probe or a diamagnetic
loop. To calculate the plasma perpendicular energy density w‘ from the
probe or loop measurements, a sharp boundary static pressure balance
model is commonly assumed. For example, if GBZ is the measured (para)
magnetic field variation between the hot plasma and a metallic wall of
radius " then from the pressure balance equation,

2

o
zi

+8H = (B + 592)2 (1)

where Bziis the magnetic field inside the hot plasma, and invoking
conservation of magnetic flux, w‘ can be expressed as

1. e 2
N12:7ﬁ;'(req )“B, 68,, for 8B, << B, 2)

where req is the hot plasma radius at equilibrium.
However, static models are not always valid. Under some
conditions (discussed below), the establishment of a plasma equilibrium
after rapid beam energy deposition involves relatively slow mass motion
of the plasma; consequently, on the time scale of the experiment, the
equilibrium state indicated by Equation 1 cannot be reached.

Furthermore, the measured 682 under such conditions may be
the amplitude of a magnetosonic wave, instead of the depth of a mag-
netic well. Therefore, an alternative model is needed when the validity
of the static model becomes questionable.

>

Note: Manuacript submitted September 20, 1976. o~ |
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Physically, two limiting regimes can be distinguished--the
resistivel?>13 regime and the reactivel regime. If

17 and/or T << T, (3)

where F is the ion collision time, T is the magnetic diffusion
time, and T = rb/vA (rb is the beam radius, va is the Alfven speed),
the system is in the resistive regime and is characterized by magnetic
diffusion processeslz'ls. The correlation between (the nonoscillatory)
682 and a given diamagnetic current in this regime has been discussed

by Guillory and Bai]ey14, and Striffler and Kapetanakosls. In the re-
active regime,

T, and T << T, (4)

the system is characterized by gross plasma motions, namely, magneto-
sonic osci]]ationsls’ 17. The latter regime applies to plasmas with
sufficiently high temperatures. Recently, oscillatory magnetic signals
have been reported5’7’9’10 and identified5’7’9 as magnetosonic oscilla-
tions. With improved heating, future experiments are likely to be in
this regime also. Hereafter, we will be concerned with this regime

only.

It is important to distinguish two cases according to experi-
mental conditions. Case 1: the hot plasma is surrounded by vacuum
or by a neutral gas; Case 2: it is surrounded by a cold plasma. For
case 1, Bz between the plasma and the wall, though oscillatory, is
spatially uniform (Fig. la), thus the static model gives a reasonable
estimate of W, provided one takes the time averaged 582 and determines
req consistently. For case 2, on the other hand, the probe or loop
(immersed in the cold plasma) will measure a magnetosonic wave (Fig. 1b)
generated by the beam energy deposition and the correlation between 6Bz
and W, is determined by the dynamics of the plasma, rather than by {
the condition of static pressure balance. The implication of GBZ in
this case is thus qualitatively different from that of case 1. For
example, roughly speaking, the wall would have no effect on the peak

2
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probe signal if rs %rp and it has no effect on the peak loop

signal if F,s %-rp, where r_ is the plasma radius, r_ is the probe

P 0
position for loop radius and we have assumed constant wave speed.
Clearly, if the above conditions are satisfied, W, given by Eq. (2),
which scales as rs, is inapplicable.

In most experiments.l's’g’11 the plasma is preformed by a

discharge; it is reasonable that in these experiments case 2 prevails.

To the authors' knowledge, a proper theoretical model to interpret probe
or loop data for case 2 in the reactive regime has hitherto been lacking,
although there are ample experimental evidences that this regime has
indeed been observed. In the following, we develop a dynamical model
applicable to this regime.

Formulation

We make the following assumptions: (1) 3/30 = 3/3z = 0;
(2) Vg * s o 0; (3) initially uniform plasma (n=n°) maintaining
quasineutrality; this, together with the previous two assumptions,
implies Vi ™ Mg %90 (4) Vp << 63 (5) neglecting electron inertia
and ion pressure; (6) neglect electron and ion collisions; (7) neglect
radial thermal conduction--this requires (rb/pe)2 v;I >> 1y, where
pe s the electron Larmor radius and v, is the electron collision fre-
quency; (8) neglect wall effect; and (9) isotropic electron velocity
distribution. The system is then described by

3 .- 3, .F
(=+v Sy =t (8)
P e
3 ¥ . =7 13 =
B, =B =-nE -5=0p (6)
Z =2 - Sl aF ¢
3




E;v} % Eé (7)
193 =< ? =
R o (®)
L+l igniy=o (9)
at r or ¥

4 5
&5 DG )=4737, (10)

where overbars represent normalized quant1t1es defined as follows:
t g t/rA, r 3 r/rb, ns n/no, Pe = 8mnkT /B 2 = Bz/Bo’
» 2 = 2
E} = Erpe/mevy, By = Egc/v,B, v 2V /s Qb = Q, 8nrA/B and
Qb is the rate of beam energy depos1t1on per unit volume. We let

n(s+2 ==S vy

‘é‘sib L P SR PR PR
— T 5o P
q, - b

0 , otherwise

where r = Tb/TA is the normalized beam duration, the free parameter

T,
%-J/f ZnFHr./r b dt Qb, is the space and time integrated beam

energy deposition scaled to the total external magnetic field energy
within the beam volume (r 5_rb) and s is a steepness parameter to
account for the spatial inhomogeneity of beam energy deposition.
Note that the only parameters to specify are those contained in

ﬁb i, &, ?B, and BE). A1l other parameters such as Bo’ Ngs Ty

etc., are scaled out of Egs. (5)-(10) through normalization.
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Solutions

The radial one-dimensional evolution of the system is computed
from Eqs. (5)-(10) using a hydromagnetic code which employs a two-step
Lax-Wendroff flux corrected transport (FCT) a1gorithm.18’19

Results of our calculations are schematically presented.
Figure 2a shows typical radial profiles of E;. Figure 2b plots
typical probe signals [65;(78)] and loop signals

B - —
§3(%) s./;" dF 2n7 88, (F')

as would be measured by a probe or loop with F; = 1.2. If a conducting
wall is present, wave bouncing will predictably produce a second,
third peak, and so on.

Figures 3a and b plot the peak probe signals (G'p) and Toop
signals (§3P) versus the total energy deposited (BE) Each family of
curves is generated by the parameter Tb We note that for the same
amount of energy deposited, a faster rate of deposition (i.e., smaller
?b) results in larger wave amplitude (see the Gﬁg curves), and stronger
dispersion or nonlinearity (see the bending of the 64P curves). Such
differences can be distinguished in the present dynamical model, but
not in the static mode] Since 6§p is a Tocal quantity and 6$p is a
global quantity, T b has less effect on the latter.

A1l calculations presented so far are for the steepness
parameter s=2. We have varied s in our runs and found that the s=1
case gives slightly (<15%) higher GBp and the s=3 case gives slightly
(<10%) lower 68p The effect of s on 88P is much weaker.

Because of the normalized parameter system employed here,
the data shown in Figs. 3a and b have general applicability. As an
example, consider the Physics International experiment recently reported
by Prono, et al. 10 Their high v/y beam heating scheme produced an
impressive plasma energy density as high as 1013 eV/cm . There is




little question that the experiment was in the reactive regime. The
static model that they used to interpret the probe signal is appropriate
for the situation depicted in Fig. la. If the situation was more like
Fig. 1b 1nstead?1then the dynamical model should have been used. In

any case, it is interesting to compare their interpretations with
those given by the dynamical model. Using their published data, we
obtain T, a 1.2, T, v 1-2, and 68D v 0.1, thus from Fig. 4a,

BE ~ 0.7-1.0, which corresponds to an average plasma energy density
of 4-6 x 1018 eV/cm3, in agreement with their interpretations. We
point out, however, that the agreement between the two interpretations
is coincidental in view of the qualitative differences between the
models used.

20

Finally, if either collisions (magnetic diffusion effect) or
thermal conduction (cooling effect) were included in our model, the
calculated signals (632 and §3°) would be weaker, Thus, BE inferred
from the present model yields a conservative estimate of beam energy
deposition.

The authors would like to thank Drs. D. Book, D. A. Hammer,
and C. C. Wei for helpful discussions.
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surrounded by vacuum or neutral gas, (b) hot plasma surrounded by cold plasma
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